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Abstract

A social choice function is group strategy-proof on a domain if no group of agents can manipulate its
final outcome to their own benefit by declaring false preferences on that domain. There are a number of
economically significant domains where interesting rules satisfying individual strategy-proofness can be
defined, and for some of them, all these rules turn out to also satisfy the stronger requirement of group
strategy-proofness. We provide conditions on domains guaranteeing that for all rules defined on them,
individual and group strategy-proofness become equivalent. We also provide a partial answer regarding the
necessity of our conditions.
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1. Introduction

Strategy-proofness is a demanding condition that most mechanisms will fail to satisfy, unless
they are defined on properly restricted environments. Group strategy-proofness is an even more
stringent requirement, but also a much more attractive one. Indeed, what use would it be to
guarantee that no single individual could cheat, if a handful of them could jointly manipulate
the system? Yet, the literature on mechanism design has concentrated mostly in analyzing the
weakest of these two conditions: after all, it is hard enough to meet, and often impossible except
for trivial procedures.

We are now well beyond the disquieting negative message of the Gibbard–Satterthwaite theo-
rem (Gibbard [6] and Satterthwaite [21]). After years of research, we know of a considerable
number of instances where non-trivial mechanisms can be found to be strategy-proof when
defined on some domains of interest. They include the case of voting when preferences are
single-peaked or separable, or when the outcomes are lotteries; they also include families of
cost sharing, matching and allocation procedures, again for the case where the preferences of
agents are conveniently restricted. When looking at the rich literature on strategy-proof rules over
restricted domains, one discovers, somewhat surprisingly, that some of the non-trivial strategy-
proof mechanisms that arise in these environments are, indeed, also group strategy-proof! It is as
if, after a hard search for a solution to the challenge of strategy-proofness, the additional blessing
of group strategy-proofness would arise automatically, as an extra gift. Of course, this does not
happen in all cases, but it occurs often enough as to warrant the following question. When is it
that, once a strategy-proof social choice function is defined, it is necessarily also group strategy-
proof? More specifically, what are the domains of preferences under which these two conditions
become equivalent and collapse into one and the same requirement?

We provide a rather complete solution to that question in voting models. We exhibit condi-
tions on families of preference profiles such that any strategy-proof social choice function whose
domain is one of these families will also be necessarily group strategy-proof.

Before proceeding with an outline of our paper let us briefly comment on the literature about
group strategy-proofness. The importance of considering deviations by coalitions, and not only
by individuals was already remarked in the early literature on strategy-proofness and implemen-
tation. See, for example, the early works of Pattanaik [17], the seminal contributions of Green
and Laffont [7] and of Dasgupta, Hammond, and Maskin [5], especially Section 4.5. While these
papers refer to the characteristics of functions which may be immune to manipulation by coali-
tions, others exhibit by means of examples the vulnerability of strategy-proof rules to deviations
by coalitions, even by very small ones (Pattanaik [17], Barberà [1], Barberà, Sonnenschein, and
Zhou [3], and Serizawa [24]).

Although the analysis of specific rules and their different incentive properties in specific con-
texts is a question of interest, our approach is a different one. Indeed, what we do is to investigate
conditions on domains of preferences under which individual and group strategy-proofness be-
come equivalent. This new approach is a natural consequence of the many remarks by different
authors on the coincidence between the two conditions in different settings (Barberà and Jack-
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son [2], Klaus [9], Moulin [15], and Pápai [16]; see also Peleg [18] and Peleg and Sudholter [19]
for the connections with the related concept of coalition-proofness). A systematic analysis of this
question has only one antecedent we know of, a recent paper by Le Breton and Zaporozhets [12],
whose results we generalize and extend (for a detailed comparison see Section 3).

Again, notice that our approach is different though complementary to the study of particular
rules. We want to argue that getting answers to the type of questions that we raise is important
on several grounds. One is intellectual curiosity: once we remark that two conditions become
sometimes equivalent, it is attractive to find out when and why. Another reason to ask questions
of equivalence is instrumental. Suppose you want to characterize all strategy-proof rules in a
domain. This is never an easy task. But the difficulty will be much less in those cases where
equivalence holds, because then you can use, from the onset, the formally much stronger re-
quirement of group strategy-proofness.

Our emphasis in this paper is on domains where the equivalence between individual and group
strategy-proofness holds for any rule, without any further qualification. But one can also inves-
tigate equivalence within classes of rules satisfying additional conditions. For example, consider
social choice functions defined on classical exchange economies, with the natural domain restric-
tions implied by the fact that agents’ preferences are selfish, strictly convex and continuous. In
this scenario, Barberà and Jackson [2] established the equivalence between individual and group
strategy-proofness for those rules satisfying the added condition of non-bossiness. Therefore, our
present approach and results can also be seen as a first step in a new line of research that may
address similar questions in environments different than the voting situations studied here.

We provide essentially two conditions for domains to imply the equivalence between our
two incentive compatibility requirements. The first one, called sequential inclusion, is satisfied
by a variety of domains, including classical ones as those of single-peaked or single-dipped
preferences. Interestingly this condition is always satisfied in the case of three alternatives.

Our second condition holds for larger domains where not all individual profiles satisfy sequen-
tial inclusion, but where an indirect version of this condition holds. Again, that weaker condition
is proven to be sufficient for the equivalence between group and individual strategy-proofness.
Notice for the sake of completeness that it is satisfied by the universal domain, where equiva-
lence is obvious. We know from the Gibbard–Satterthwaite theorem that in that case the only
strategy-proof rules are the dictatorial ones, which are also obviously group strategy-proof. We
also discuss other domains where our condition holds and that admit non-dictatorial classes of
strategy-proof rules.

Notice that indirect sequential inclusion is weaker than the direct version of the condition.
Therefore, the former is a more general sufficient condition for equivalence, and the one to be
emphasized if we are interested in the weakest possible requirement.

Yet, direct sequential inclusion is an interesting property per se. First of all, it is the building
block leading to the indirect version. Also, it is a single profile condition, and this has several
implications. One is that it is in principle easier to check for. The other is that if the condition
holds on a domain, it also does in all of its subdomains. We find that results that allow us to
make definite statements regarding all rules defined on a set of preferences, and that translate
into statements that apply even if the domain happens to only be a subset of them, are of special
interest. In particular, notice that as we shrink a given domain to a smaller one, containing only
part of the original profiles, new rules may start satisfying the requirement of strategy-proofness.
Sequential inclusion guarantees that these emerging rules will also be group strategy-proof.

The last result in the paper (see Section 5) shows that sequential inclusion is essentially a
necessary condition for a domain to guarantee equivalence on all of its subdomains. Under mild
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conditions, we prove that if sequential inclusion is violated for some preference profile in a
domain, then it is possible to define a strategy-proof rule on a subdomain of it violating group
strategy-proofness.

The paper is organized as follows. Section 2 contains the model, the definition of our basic
condition of sequential inclusion, and the statement of our first main result; that is, in domains
where this condition is satisfied, individual and group strategy-proofness become equivalent.
Section 3 introduces the weaker condition of indirect sequential inclusion, and proves it to still
be sufficient to guarantee the equivalence of our two incentive compatibility requirements: this is
our second basic result. Section 4 provides examples of domains that satisfy sequential inclusion
or the indirect version. Section 5 provides the announced result on the necessity of sequential
inclusion to achieve equivalence for a domain and all of its subdomains. Section 6 concludes
with some directions for further work. Finally, Appendix A collects all the main proofs.

2. The model and the basic result

Let A be the set of alternatives and N = {1,2, . . . , n} be the set of agents (with n � 2).
Let capital letters S,T ⊂ N denote subsets of agents while lower case letters s, t denote their
cardinality.

Let R be the set of complete, reflexive, and transitive orderings on A and Ri ⊂ R be the set of
admissible preferences for agent i ∈ N . A preference profile, denoted by RN = (R1, . . . ,Rn), is
an element of ×i∈N Ri . Preferences will be denoted in two possible ways. When they are part of
a given preference profile, we’ll use the notation Ri ∈ Ri to denote that these are the preferences
of agent i in the profile. In other cases, we want to have a name for a given preference, and
our notation must be independent of who holds the preference in question at what profile. Then
we will use superscripts, and let Rl stand for a specific relation. We may later on attribute that
preference to some agents, and then we will write that Rl = Ri or equivalently, Rl

i .
1 As usual,

we denote by Pi and Ii the strict and the indifference part of Ri , respectively. Let C,S ⊂ N

be two coalitions such that C ⊂ S. We will write the subprofile RS = (RC,RS\C) ∈ ×i∈S Ri

when we want to stress the role of coalition C in S. Then the subprofiles RC ∈ ×i∈C Ri and
RS\C ∈ ×i∈S\C Ri denote the preferences of agents in C and in S\C, respectively. In the case,
where we denote full preference profile (that is, when S = N ), we simplify notation by using
(RC,RN\C) as (RC,R−C).

The following concept is crucial in all our analysis. For any x ∈ A and Ri ∈ Ri , define the
lower contour set of Ri at x as L(Ri, x) = {y ∈ A: xRiy}. Similarly, the strict lower contour set
at x is L(Ri, x) = {y ∈ A: xPiy}.

A social choice function (or a rule) is a function f :×i∈N Ri → A. Let Af denote the range
of the social choice function f .

We will focus on rules that are nonmanipulable, either by a single agent or by a coalition of
agents. We first define what we mean by a manipulation and then we introduce the well-known
concepts of strategy-proofness and group strategy-proofness.

Definition 1. A social choice function f is group manipulable on ×i∈N Ri at RN ∈ ×i∈N Ri

if there exists a coalition C ⊂ N and R′
C ∈ ×i∈C Ri (R′

i �= Ri for any i ∈ C) such that
f (R′

C,R−C)Pif (RN) for all i ∈ C. We say that f is individually manipulable if there exists
a possible manipulation where coalition C is a singleton.

1 The latter notation will be used extensively in Appendix A, proof of Theorem 4.
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Definition 2. A social choice function f is group strategy-proof on ×i∈N Ri if f is not group
manipulable for any RN ∈ ×i∈N Ri . Similarly, f is strategy-proof if it is not individually manip-
ulable.

The reader will notice that our definition requires that all agents in a coalition that manipulates
should obtain a strictly positive benefit from doing so. We consider this requirement compelling,
since it leaves no doubt regarding the incentives for each member of the coalition to participate
in a collective deviation from truthful revelation.

Notice that the domains of our social choice functions will always have the form of a Cartesian
product. This is necessary to give meaning to our definitions of individual and group strategy-
proofness. Also notice that, although the notion of a domain is attached to that of a given function,
we shall also refer to any Cartesian family of preference profiles as a domain, and to its Cartesian
subsets as its subdomains. This is consistent with tradition, although it would be more precise to
call them potential domains, as we shall in fact consider sets of functions that could be defined
on them.

We shall not dwell on the importance of achieving either of these two incentive compatibility
conditions. Our focus will be on these specific cases where it is possible to at least define satisfac-
tory strategy-proof rules. What is needed then to hope for the stronger and much more reassuring
property of group strategy-proofness to also hold? This is the main question we address.

Specifically, in this section we define our first condition on preference profiles, called sequen-
tial inclusion, and we establish the equivalence between individual and group strategy-proofness
for social choice functions defined on domains satisfying that condition. Before that, let us intro-
duce some notation that will be important and will often appear along the paper.

Let RN ∈ ×i∈N Ri , and y, z be a pair of alternatives. Denote by S(RN ;y, z) ≡ {i ∈ N : yPiz},
that is, the set of agents who strictly prefer y to z according to their individual preferences in RN .

Definition 3. Given a preference profile RN ∈ ×i∈N Ri and a pair of alternatives y, z ∈ A, we
define a binary relation � (RN ;y, z) on S(RN ;y, z) as follows2:

i � (RN ;y, z)j if L(Ri, z) ⊂ L(Rj , y).

Note that the binary relation � must be reflexive but not necessarily complete. As usual, we
can define the strict and the indifference binary relations associated to �. Formally, i ∼ j if
L(Ri, z) ⊂ L(Rj , y) and L(Rj , z) ⊂ L(Ri, y). We say that i 
 j if L(Ri, z) ⊂ L(Rj , y) and
¬[L(Rj , z) ⊂ L(Ri, y)].

We can now define our main condition.

Definition 4. A preference profile RN ∈ ×i∈N Ri satisfies sequential inclusion for y, z ∈ A if the
binary relation � (RN ;y, z) on S(RN ;y, z) is complete and acyclic.

Definition 5. A preference profile RN ∈ ×i∈N Ri satisfies sequential inclusion if for any pair
y, z ∈ A the binary relation � (RN ;y, z) on S(RN ;y, z) is complete and acyclic. A domain
×i∈N Ri satisfies sequential inclusion if any preference profile in this domain satisfies it.

2 In what follows, and when this does not induce to error, we may omit the arguments RN , y and z and just write �.
Note also that we use the inclusion symbols “⊂” and “⊃” in a weak sense, that is, they encompass equality of sets.
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Table I
Preferences in Example 1.

R R′ R̃

x x w
y y y
z w z
w z x

Table II
Preferences in Example 2.

R R′ R̂

x w t
y y y
w t x
z z z
t x w

Since sequential inclusion is a property on preference profiles, it follows that if a domain satis-
fies sequential inclusion each subdomain inherits the same property. Remarkably, this condition
does not require domains to be large in size, contrary to others, like “richness” (see Dasgupta,
Hammond, and Maskin [5], Le Breton and Zaporozhets [12]) or our own condition of indirect
sequential inclusion (see Section 3).

Remark 1. Notice that there are two different ways to violate sequential inclusion: by lack of
completeness and because of cycles. Both aspects of the definition are essential in what follows,
but could be factored out for other purposes, as their implications are different.

To illustrate sequential inclusion and the previous remark consider the following examples.

Example 1. Let N = {1,2}, A = {x, y, z,w}, and R1, R2 ⊃ {R,R′, R̃}, where xPyPzPw,
xP ′yP ′wP ′z, and wP̃yP̃ zP̃ x as represented3 in Table I.

Let RN = (R,R′) and take y, z ∈ A. By definition, S(RN ;y, z) = {1,2}. Observe also that
L(R, z) ⊂ L(R′, y) and L(R′, z) ⊂ L(R,y), that is, 1 ∼ (RN ;y, z)2. Thus, � (RN ;y, z) is com-
plete (trivially acyclic since there are only two agents). The same argument works for any pair of
alternatives and thus we can conclude that RN satisfies sequential inclusion.

Let RN = (R, R̃) and take y, z ∈ A. By definition, S(RN ;y, z) = {1,2}. Observe that nei-
ther L(R, z) ⊂ L(R̃, y) nor L(R̃, z) ⊂ L(R,y) holds. Then � (RN ;y, z) is not complete which
means that RN violates sequential inclusion.

Example 2. Let N = {1,2,3}, A = {x, y, z,w, t}, and R1, R2 ⊃ {R,R′, R̂} such that the binary
relations stated in Table II hold.

Let RN = (R,R′, R̂), y, z: S(RN ;y, z) = {1,2,3}. Observe that L(R, z) ⊂ L(R′, y) but
¬[L(R′, z) ⊂ L(R,y)], then 1 
 2. Similarly, 2 
 3 and 3 
 1. Thus, � (RN ;y, z) is complete
but it has a cycle: RN violates sequential inclusion.

3 From now on, we will use in some examples the same table representation for individual preferences.
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Below we present a somewhat surprising result for the case of three alternatives: We show that
when there are at most three alternatives at stake, any preference profile RN ∈ ×i∈N Ri satisfies
sequential inclusion.

Proposition 1. Let #A � 3. Then, any profile of preferences RN ∈ ×i∈N Ri satisfies sequential
inclusion.4

The proof is in Appendix A. Notice that Proposition 1 cannot be generalized for more than
three alternatives, as shown by Example 1 above: profiles violating sequential inclusion can be
already constructed with four alternatives.

We now present our first main result, which we prove in Appendix A.

Theorem 1. Let ×i∈N Ri be a domain satisfying sequential inclusion. Then, any strategy-proof
social choice function on ×i∈N Ri is group strategy-proof.

Proposition 1 and Theorem 1 imply the following corollary.

Corollary 1. Let #A � 3. Any strategy-proof social choice function on ×i∈N Ri is group strategy-
proof.

3. Indirect sequential inclusion

In this section we provide a new condition, weaker than sequential inclusion, that still guaran-
tees the equivalence between individual and group strategy-proofness. It is no longer a condition
on individual profiles. Rather, it requires that, given a profile within the domain, some other
profile, conveniently related to the first one (see below), does indeed satisfy our previous re-
quirement. That is why we say that profiles that meet our new condition satisfy indirect sequential
inclusion. The new definition allows us to incorporate new and interesting domains into our list
of those guaranteeing equivalence.

One of them is the universal domain. It is nice to have this clear case of equivalence incorpo-
rated into our framework. Moreover, as we mention below, there are also other relevant domains
where sequential inclusion holds indirectly, while not in its direct form.

Definition 6. For preferences Ri,R
′
i ∈ Ri and alternative z ∈ A, R′

i is a strict monotonic trans-
formation of Ri at z if R′

i is such that for all x ∈ A\{z} such that zRix, zP ′
i x.

Definition 7. Let R′
N,RN ∈ ×i∈N Ri be two preference profiles and let z ∈ A. We say that R′

N is
a strict monotonic transformation of RN at alternative z if for any i ∈ N , either R′

i = Ri or else
R′

i is a strict monotonic transformation of Ri at z.

Definition 8. A domain ×i∈N Ri satisfies indirect sequential inclusion if, for all profiles RN ∈
×i∈N Ri , either (a) the profile RN satisfies sequential inclusion; or else (b) for each pair y, z ∈ A

there exists R′
N ∈ ×i∈N Ri where R′

N\S(RN ;y,z)
= RN\S(RN ;y,z), such that

4 The same proof works to show the same result if #Af � 3.
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(1) R′
N is a strict monotonic transformation of RN at z,

(2) for any i ∈ S(RN ;y, z), yP ′
i z, and

(3) � (R′
N ;y, z) is complete and acyclic.

Theorem 2. Let ×i∈N Ri be a domain satisfying indirect sequential inclusion. Then, any strategy-
proof social choice function on ×i∈N Ri is group strategy-proof.

See the proof of Theorem 2 in Appendix A.
Indirect sequential inclusion is indeed the weakest of our two conditions for equivalence be-

tween individual and group strategy-proofness. Still, we pursue the study of both direct and
indirect sequential inclusion because each one of the two has its own attractive features. The
indirect version is indeed weaker, and thus covers more cases. But since it is a condition on do-
mains taken as a whole, it may fail to hold if some preference profiles are removed from a domain
that did satisfy it originally. Direct sequential inclusion is posited on each individual preference
profile. Therefore, if it is satisfied on a given domain, it also holds for any of its subdomains.
Indeed, it is a stronger condition, but as we shall see in Section 4, it also allows us to make
additional statements of interest.

With our results in hand, we can now comment on the relationship between our paper and
Le Breton and Zaporozhets [12]. One obvious addition on our side is everything regarding the
condition of sequential inclusion. So we restrict the comparison to the result involving indirect
sequential inclusion. To do that, we first adapt to their framework where each individual set of
admissible preferences coincides; that is, Ri = R for any i ∈ N , and then we need two of their
definitions, and the statement of their result.

Definition 9. (See Definition 6 in Le Breton and Zaporozhets [12].) A domain Rn is rich if for all
R ∈ R and any x, y ∈ A such that yPx and there exists Ry ∈ R where yPyz for any z ∈ A\{y},
then, there exists R′ ∈ R where yP ′z for any z ∈ A\{y}, and for all z �= x such that xRz, we
have xP ′z.

Definition 10. (See Definition 3 in Le Breton and Zaporozhets [12].) A social choice function
is regular if for any alternative in the range, say x ∈ Af , there exists an individual preference
Rx ∈ R such that xPxz for any z ∈ A\{x}.

Theorem 3. (See Theorem 1 in Le Breton and Zaporozhets [12].) If a regular social choice
function on a rich domain is strategy-proof, then it is also group strategy-proof.

The comparison of this result with that of our Theorem 2 requires some initial and subtle
remarks. First, notice that domains satisfying sequential inclusion (direct or indirect) need not be
rich, while rich domains need not satisfy either of our conditions.5 Hence, if it was not for the
regularity condition, both theorems might have looked independent but in fact they are not. Our
second remark is that regularity imposes special connections between the domain of definition
of social choice functions and their range. Specifically, there are domains of preferences which
admit regular preferences with a full range, and other domains that force the ranges of regular
functions to be strictly smaller than the set of alternatives.

5 Examples available upon request.
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As stated in Proposition 2 below, and proved in Appendix A, any rich domain admitting some
regular, onto social choice function must satisfy indirect sequential inclusion. Thus, for these
domains, our result strictly improves on Le Breton and Zaporozhets [12].

Proposition 2. Let Rn be a rich domain admitting onto and regular social choice functions.
Then, Rn satisfies indirect sequential inclusion.

What if the range of a social choice function satisfying the conditions of Theorem 3 is re-
stricted to be a subset A′ of A? Then we could prove that an analog of indirect sequential
inclusion holds, weaker but still sufficient to guarantee equivalence between individual and group
strategy-proofness.

We omit the definitions and results that would complete our argument, in line with Propo-
sition 2, to keep the paper self contained and within the bounds of editorial recommendations.
A companion paper will present further results involving the restriction of our basic concepts
here to subsets of voters or to subsets of alternatives.

4. Examples

In this section we present examples of domains that illustrate our conditions and results. We
discuss some examples in detail, because of their special relevance. At the end of the section we
provide a longer list of domains that are also covered by our results.

We first define the domain of single-peaked preferences and we show that it satisfies sequential
inclusion. We then define the domain of separable preferences and show that it violates both
direct and indirect sequential inclusion.

These two examples of domains are chosen because it is well known that many interesting
(non-trivial) strategy-proof social choice functions can be defined on either of them. For the case
of single-peaked preferences (see Moulin [13]), all these rules are also group strategy-proof,
consistently with our Theorem 1, given that sequential inclusion is satisfied. In contrast, for
the case of separable preferences (see Barberà, Sonnenschein, and Zhou [3]), many of these
strategy-proof social choice functions are group manipulable, a fact that is again consistent with
the violation of indirect sequential inclusion.

After that, we present a third domain, which is given by a proper subset of separable pref-
erences, called lexicographically separable. The domain of separable preferences is, in general,
large enough to violate (direct) sequential inclusion, but small enough to respect indirect se-
quential inclusion. Notice that for the subdomain of lexicographically separable preferences,
all of the non-trivial and interesting rules that are known to be individually strategy-proof on
the domain of separable preferences would still be, and would now, in addition, satisfy group
strategy-proofness.

Finally, we include the case of the universal domain. From the Gibbard–Satterthwaite theorem
we already know directly that the equivalence must hold on this domain. Since it only admits
dictatorship as a strategy-proof rule, and this is also immune to group manipulation. Even then,
we prove that our conditions do hold, just for the sake of completeness.

4.1. Single-peaked preferences

Single-peakedness arises as a natural restriction on the preferences of agents facing many rel-
evant problems: determining the level of a pure public good without transfers, locating a facility
on a line, deciding on a tax level, choosing among candidates, among others.
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Definition 11. A preference profile RN is single-peaked iff there exists a linear order > of the
set of alternatives such that

(1) each of the voters’ preferences has a unique maximal element pi(A), called the peak of i,
and

(2) for all i ∈ N , for all pi(A), and for all y, z ∈ A

[
pi(A) � y > z or z > y � pi(A)

] → yPiz.

Proposition 3. Any single-peaked profile RN satisfies sequential inclusion.

Proof. Take any single-peaked profile RN and any pair of alternatives y, z ∈ A such that z > y

(if y > z we should interchange the use of the words “left” and “right” in what follows). Let
us show that � (RN ;y, z) on S(RN ;y, z) is complete and acyclic. Remark that for any pair of
agents i, j such that yPiz and yPjz, then, either L(Ri, z) ⊂ L(Rj , z) or L(Rj , z) ⊂ L(Ri, z). To
see this, notice that both lower contour sets are unions of two sets (the set containing alternatives
to the right side of z and the set of alternatives to the left side of y). One of the two sets (the
one to the right side of z) is common to all individual preferences. The other sets are specific to
each z and they are nested.

Without loss of generality, say that L(R1, z) ⊂ · · · ⊂ L(Rs, z). Now order agents in the same
way as they appear in this order of lower contour sets. Since yPiz for any i ∈ S(RN ;y, z),
we have that 1 � 2,3, . . . , s; 2 � 3, . . . , s; . . . ; and s − 1 � s. This shows that � (RN ;y, z)

is complete and acyclic (there is no cycle since for any agent i, i � j for j following i given
the order stated by the increasing order of lower contour sets at z), as required by sequential
inclusion. �
4.2. Separable preferences

The domain of separable preferences is important on the literature of strategy-proofness, since
it has been proven to admit rich and attractive classes of non-manipulable rules. Border and
Jordan [4], Le Breton and Sen [10], Le Breton and Weymark [11] have analyzed a model with
separable preferences in continuous multidimensional spaces. For the purpose of our example,
we adopt a simpler framework, where the number of alternatives is finite. It is the one proposed
in Barberà, Sonnenschein, and Zhou [3] to analyze the problem of selecting subsets from a set of
k objects, K = {x1, x2, . . . , xk}.

Individual preferences are linear orders on the set 2K (including the empty set).6 Given any
preference R on 2K , we can define the set of “good” objects G(K,R) = {xi ∈ K: {xi}P∅} and
the set of “bad” objects B(K,R) = {xj ∈ K: ∅P {xj }}.

Definition 12. R is an individual separable preference on 2K if and only if for any set T and any
object xl /∈ T , T ∪ {xl}PT if xl ∈ G(K,R).

In words, adding a new good object to any set makes the union better than the original set and
adding a bad object makes it worse.

6 Notice that alternatives, to be denoted by y, z, . . . , are subsets of objects.
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Table III
All separable preferences with two objects (Remark 2).

R1 R2 R3 R4 R5 R6 R7 R8

∅ ∅ x1 x1 x2 x2 {x1, x2} {x1, x2}
x1 x2 ∅ {x1, x2} ∅ {x1, x2} x1 x2
x2 x1 {x1, x2} ∅ {x1, x2} ∅ x2 x1
{x1, x2} {x1, x2} x2 x2 x1 x1 ∅ ∅

Remark 2. Given a set K composed of k objects, the family of all separable preference profiles
on 2K violates indirect sequential inclusion.

We first offer an indirect argument. We exhibit a rule that it is strategy-proof but not group
strategy-proof on these domains. In view of Theorem 2 this proves that indirect sequential inclu-
sion fails.

The rule is voting by quota one: each agent declares her best set of objects and any object that
is mentioned by some agent is selected. When K consists of two objects, x1 and x2, the set of all
individual separable preferences is detailed in Table III.

Notice that for a profile where R1 = R3, R2 = R5 and for any other agent Ri = R1 the out-
come would be {x1, x2}, whereas 1 and 2 could vote for ∅ and get a preferred outcome. The
example easily extends to any set of alternatives: just take profiles as we have just defined and
extend individual preferences such that the relative ordering among x1, x2, {x1, x2} and the empty
set are like in Table III and any other object is bad.

We could also offer a more direct proof that indirect sequential inclusion does not hold in our
domains. We develop the argument for the case k = 2. Refer to Table III: observe that for any pair
of alternatives y, z there only exist four individual separable preferences such that y is strictly
preferred to z. Thus, for any preference profile RN , S(RN ;y, z) will always consist of, at most,
four different admissible preferences.

To show that the set of separable preferences on 2K violates indirect sequential inclusion
we need to obtain a profile violating both conditions (a) and (b) in Definition 8. Without loss
of generality, consider the following example where y = ∅, z = {x1, x2}, and suppose that RN

is such that the preferences of agents 1 to 4, are distinct and such that R1 = R1, R2 = R2,
R3 = R3, and R4 = R5. Remark that this profile does not satisfy sequential inclusion. For the
given pair of alternatives, � (RN ;y, z) is not complete since neither L(R3, z) ⊂ L(R4, y) nor
L(R4, z) ⊂ L(R3, y) and thus, RN does not satisfy condition (a). Finally, notice that there is
no admissible monotonic transformation of preferences of R3 and R5 at z where y is strictly
preferred to z (other than R3 and R5 themselves). Therefore, RN cannot satisfy condition (b).

4.3. Lexicographically separable preferences

Now, we introduce an additional restriction on preferences to be added to that of separabil-
ity. To define this restriction, consider a given order of the objects. Without loss of generality,
consider the order σ(k) where x1 is first, x2 is second, etc.

Definition 13. We say that a preference R is lexicographically separable if

(1) it is separable,
(2) all sets containing x1 are better (respectively, worse) than any set not containing x1, if x1 ∈

G(K,R) (respectively, if x1 ∈ B(K,R)),
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Table IV
All lexicographically separable preferences with two objects (Remark 3).

R2 R4 R5 R7

∅ x1 x2 {x1, x2}
x2 {x1, x2} ∅ x1
x1 ∅ {x1, x2} x2
{x1, x2} x2 x1 ∅

(3) out of sets containing x1, those containing x2 are better (respectively, worse) than those not
containing x2, if x2 ∈ G(K,R) (respectively, if x2 ∈ B(K,R)),

(4) out of sets not containing x1, those containing x2 are better (respectively, worse) than those
not containing x2, if x2 ∈ G(K,R) (respectively, if x2 ∈ B(K,R)),

and so on.

Remark 3. When k = 2, any profile of lexicographically separable preferences satisfies sequen-
tial inclusion.

To substantiate Remark 3, the reader may just inspect the set of all admissible preferences
satisfying the restriction when k = 2, which is detailed in Table IV.

Observe that for any pair of alternatives y, z there only exist two individual separable prefer-
ences such that y is strictly preferred to z. Thus, for any preference profile RN , S(RN ;y, z) will
always consist of, at most, two different admissible individual preferences. Without loss of gen-
erality, consider the pair of alternatives y = ∅, z = {x1, x2}. Note that the preference of any agent
i ∈ S(RN ;y, z), is Ri ∈ {R2,R5}. Then, we have that for any two agents i, j ∈ S(RN ;y, z) if ei-
ther (a) Ri = Rj then L(Ri, {x1, x2}) ⊂ L(Rj ,∅) or (b) if Ri �= Rj , say Ri = R2

i and Rj = R5
j ,

L(R2
i , {x1, x2}) = {x1, x2} ⊂ L(R5

j ,∅) = {{x1, x2}, x1}. Thus, sequential inclusion holds.

Remark 4. When k > 2, the domain of lexicographically separable preferences (that is, the set
of all lexicographically separable preferences profiles) satisfies indirect sequential inclusion but
violates sequential inclusion.

We provide an argument supporting the assertions in Remark 4 for the case k = 3 (this can
be generalized for any k > 3). Note that the set of all individual lexicographically separable
preferences is as in Table V.

Observe that for any pair of alternatives y, z there only exist four individual lexicograph-
ically separable preferences such that y is strictly preferred to z. Thus, for any preference
profile RN , S(RN ;y, z) will always consist of, at most, four different admissible individual pref-
erences. Without loss of generality, consider the following example where y = x2, z = {x2, x3},
and suppose that RN is such that the preferences of agents 1 to 4, are distinct and such that
R1 = R1, R2 = R2, R3 = R3, and R4 = R4.7 Remark that any profile containing these four
initial agents would violate sequential inclusion: � (RN ;y, z) is not complete since neither

7 A similar and simpler argument would work for cases where not all distinct admissible preferences are present in the
initial profile.
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Table V
All lexicographically separable preferences with three objects (Remark 4).

R1 R2 R3 R4 R5 R6 R7 R8

∅ x1 x2 {x1, x2} x3 {x1, x3} {x2, x3} {x1, x2, x3}
x3 {x1, x3} {x2, x3} {x1, x2, x3} ∅ x1 x2 {x1, x2}
x2 {x1, x2} ∅ x1 {x2, x3} {x1, x2, x3} x3 {x1, x3}
{x2, x3} {x1, x2, x3} x3 {x1, x3} x2 {x1, x2} ∅ x1
x1 ∅ {x1, x2} x2 {x1, x3} x3 {x1, x2, x3} {x2, x3}
{x1, x3} x3 {x1, x2, x3} {x2, x3} x1 ∅ {x1, x2} x2
{x1, x2} x2 x1 ∅ {x1, x2, x3} {x2, x3} {x1, x3} x3
{x1, x2, x3} {x2, x3} {x1, x3} x3 {x1, x2} x2 x1 ∅

L(R1, z) ⊂ L(R4, y) nor L(R4, z) ⊂ L(R1, y). To prove that any profile containing these four
agents would respect indirect sequential inclusion we first define a monotonic transform. Simply
change the preferences of all individuals whose preferences were initially R1 to be now equal
to R3. Let R̂N be the new profile. Clearly, R̂N is a strict monotonic transformation of RN at z

and for any i ∈ S(RN ;y, z), yP̂iz (in fact, S(R̂N ;y, z) = S(RN ;y, z)) and in R̂N all agents
have preferences either R2, or R3, or R4. Moreover, R̂N satisfies sequential inclusion for y, z.
To see it, observe that L(R̂ 2

i , z) ⊂ L(R̂4
j , z) ⊂ L(R̂ 3

k , z). Furthermore, ¬[L(R̂ 3
k , z) ⊂ L(R̂ 2

i , y)],
¬[L(R̂4

j , z) ⊂ L(R̂ 2
i , y)], and ¬[L(R̂ 3

k , z) ⊂ L(R̂4
j , y)]. Thus, i 
 j for any agents i, j such

that Ri = R2 and Rj = R3, or Ri = R2 and Rj = R4, or Ri = R4 and Rj = R3, i ∼ j for any
agents i, j such that Ri = Rj . Thus, � (R̂N ;y, z) is complete and acyclic and the domain where
all agents have lexicographically separable preferences on subsets of k objects satisfies indirect
sequential inclusion.

4.4. The universal domain

Consider the universal domain: for any agent i ∈ N , Ri = R.
We first notice, that this domain violates sequential inclusion when there are more than three

alternatives since we have different examples of subdomains where this condition is not satis-
fied.

Now, we show that the universal domain satisfies indirect sequential inclusion. Let RN be a
preference profile and let y, z ∈ A. If � (RN ;y, z) is complete and acyclic, let R′

N = RN . Other-
wise, define R′

N as follows: for any j ∈ N\S(RN ;y, z), R′
j = Rj . And for any i ∈ S(RN ;y, z),

R′
i and Ri coincide in the ranking of most pairs of alternatives, with two exceptions. One is that

yP ′
i t for any t ∈ A\{y} (that is, y is pushed up to be the unique best alternative for R′

i ). The
other change from Ri to R′

i is that for any t ∈ A such that tIiz, then zP ′
i t (that is, alternatives

indifferent to z in Ri are strictly worse than z under R′
i ). Observe that R′

N satisfies the follow-
ing: for any i ∈ S(RN ;y, z), R′

N is a strict monotonic transformation of RN at z. Also, for any
agent i ∈ S(RN ;y, z) the ranking between y and z has not changed going from Ri to R′

i . And
finally, � (R′

N ;y, z) is complete and acyclic. Observe that L(R′
l , z) ⊂ L(R′

i , y) = A\{y} for any
i, l ∈ S(RN ;y, z). Thus, i ∼ (RN ;y, z)l for any i, l ∈ S(RN ;y, z). This shows that the universal
domain satisfies indirect sequential inclusion.

In this last part of this examples section, we provide a list of domains where at least one of our
conditions for equivalence is satisfied. We provide some references where the interested reader
find the exact definition of the domains we refer to.
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4.5. Some other examples

Domains of preferences where sequential inclusion holds, and for which Theorem 1 applies,
include:

(i) any subset of single-peaked preferences;
(ii) any subset of single-dipped preferences (see Sen and Pattanaik [23]);

(iii) any subset of clockwise and/or counterclockwise preferences on a finite set of alternatives
around a circle (see Kim and Roush [8]);

(iv) any subset of (weakly) single-plateaued preferences (even allowing for some indifferences
among alternatives that are not best) (see Moulin [14]);

(v) any subset of (weakly) single-throughed preferences;
(vi) any subset of lexicographically separable preferences on sets of two candidates (see Re-

mark 3 in Section 4).

Domains of preferences where indirect sequential inclusion, though not sequential inclusion,
holds, and thus result in Theorem 2 applies, are those generated by the following sets of admis-
sible preferences for any agent:

(vii) the universal domain;
(viii) the case where the preferences of some agents are always single-peaked and those of others

always single-dipped (see W. Thomson, Where should your daughter go to college? An
axiomatic analysis, mimeo, University of Rochester, 2008);

(ix) lexicographically separable preferences on three or more objects (see Remark 4 in Sec-
tion 4);

(x) the set of single-crossing preferences when the set of preferences is maximal (see Sapor-
iti [20]);

(xi) the set of all quadratic preferences on some subset A in Rm (see Border and Jordan [4]);
(xii) the set of all single-peaked preferences over the circle when we can travel clockwise or

counterclockwise (see Schummer and Vohra [22]).

5. A partial result on necessity

In this section we provide a result that establishes the partial necessity of sequential inclusion
to guarantee that individual and group strategy-proofness become equivalent. We have already
remarked that, if sequential inclusion holds in some domain, it also holds in all subdomains, and
so does equivalence. What we can prove is that under additional conditions if equivalence holds
for a domain and all of its subdomains, then sequential inclusion must be satisfied by all of them.
Or, equivalently, that if sequential inclusion fails for some domain, then it is possible to find a
subdomain where to define a rule that is individually but not group strategy-proof. Since this rule
will be defined on a subdomain, rather than on the full domain we start with, we do not have a
full proof of necessity.

The proof is technically challenging. Since we must start from a violation of sequential in-
clusion and this may happen due to the existence of cycles of any length k, our construction
must refer to rules whose range is large enough (as shown in the proof, it must contain at least
k + 2 alternatives). Yet the existence of strategy-proof rules with range of a given size is not easy
to guarantee unless we impose some conditions on the nature of the domain. In particular, it is
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easy to find reasonable domains for which the only strategy-proof rules (including the dictatorial
ones) require a very small range. Because of that, and since our proof is going to be constructive,
we must impose some condition on their structure of the domains in order to get our necessity
result. We have explored several such requirements and the result we present here depends on
the condition that our domains ×i∈N Ri allow for opposite preferences, that is, are such that for
any i, if Ri ∈ Ri , its opposite Ri also belongs to Ri (Ri and Ri are opposite if for any x, y ∈ A,
xRiy ⇔ yRix).

Admittedly, this is a restrictive condition. In particular, it does not hold for some of the
domains, like single-peakedness, that we have shown to satisfy sequential inclusion. But it is sat-
isfied by many of the domains where indeed indirect sequential inclusion does not hold. For ex-
ample, it holds for the set of separable preferences, and also for the domain of linear preferences
on simplices, where the alternatives are interpreted as lotteries over pure alternatives. We know
of other conditions under which a similar result could be proven and we hope that the reader will
be able to appreciate the flavor of the result in addition to the precise presentation that follows.

We now state the basic theorem.

Theorem 4. Let ×i∈N Ri be a domain that allows for opposite preferences and such that any
strategy-proof social choice function on ×i∈N Di ⊂ ×i∈N Ri is also group strategy-proof. Then,
×i∈N Ri satisfies sequential inclusion.

The proof of Theorem 4 is long and quite involved. We sketch it here and we provide all the
remaining details in Appendix A.

Sketch of the proof of Theorem 4. Our starting point is given by a domain of preferences
containing some profile where sequential inclusion is violated. We first use this profile in order
to identify a specific set of alternatives and a specific set of preferences on these alternatives
that belong to the domain and satisfy a number of properties (Lemmas 1 and 2). We use these
preferences to create a subdomain of the original one, and then exploit their characteristics in
order to construct a specific rule that is strategy-proof but not group strategy-proof, within the
subdomain. In the case where sequential inclusion is violated by lack of completeness Lemma 3
provides a simple construction. When the violation is due to a cycle our choice of domain is
more involved and the rule is more complex. It is essentially a modification of the Borda rule
with two extra features: ties are always avoided and the rule does not follow Borda in two crucial
profiles. This rule turns out to be individually but not group strategy-proof on our domain and
this completes the proof.

6. Concluding remarks

In this paper we have identified conditions on domains where all rules satisfying strategy-
proofness must also be immune to manipulations by groups. We have not imposed any further
conditions on the nature and properties of such rules. One could think of further refinements of
our results, where the equivalence between individual and group strategy-proofness might hold
(in given domains) between classes of rules which satisfy some additional condition. As men-
tioned in the Introduction, an example in this line is given by social choice functions defined on
classical exchange economies, where Barberà and Jackson [2] have established the equivalence
between individual and group strategy-proofness for those rules satisfying the added condition
of non-bossiness.
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This example also allows us to comment on the type of domain restrictions we may be in-
terested in. Those that we have used as examples arise very naturally in voting contexts. But
there are also other domains that allow for non-trivial strategy-proof rules and that appear in
connection with economic problems like those of matching, cost allocation, or the assignment of
indivisibles. We conjecture that one would also be able to prove interesting equivalence results
within these domains, especially if concentrating in subclasses of functions satisfying appropriate
additional conditions.

Also notice that the requirement on the binary relation defining our different notions of se-
quential inclusion can be factored out into two pieces. One requires this relation to be complete;
the other demands its acyclicity. Because of that, in the presence of domain restrictions arising
from other considerations, we may not need to impose the full form of sequential inclusion in
order to get equivalence. For example, in Cartesian domains where preferences satisfy single-
crossing, satisfying completeness will be sufficient to guarantee indirect sequential inclusion
since acyclicity does always hold. In particular, we can prove that completeness will hold on
maximal sets of single-crossing preferences (as defined by Saporiti [20]) and this is why we have
mentioned these sets of preferences as example (x) in Section 4.

In summary, our work has studied the pure case of equivalence without further restrictions.
What we suggest is that imposing added structure on domains and/or the functions defined upon
them is a natural next step.

Finally, let us mention that our conditions of direct and indirect sequential inclusion can be
weakened in two different ways. On the one hand, requiring the non-existence of cycles of sizes
smaller than a fixed k, k � n, and on the other hand imposing our properties on subsets of al-
ternatives, not necessarily on the whole set of alternatives. Using such weakened properties, our
results extend to intermediate versions of strategy-proofness, defined to exclude manipulations
by small group of agents, and also to state the equivalence when applied to some subsets of alter-
natives. These conditions and their implications are part of a companion paper (see S. Barberà,
D. Berga, B. Moreno, On the design of group strategy-proof mechanisms: domains, ranges and
special conditions, mimeo, 2010).

Appendix A. Proofs

Proof of Proposition 1. If #A = 2 or #A = 1 sequential inclusion trivially holds. Therefore,
we concentrate on the case where A consists of three distinct alternatives x, y, and z and
RN ∈ ×i∈N Ri . Without loss of generality, choose two of these three alternatives, say y and z. De-
fine the following partition: S(RN ;y, z) = Sz(RN ;y, z)∪S{x,z}(RN ;y, z) where Sz(RN ;y, z) =
{j ∈ S(RN ;y, z) such that L(Rj , z) = {z}} and S{x,z}(RN ;y, z) = {k ∈ S(RN ;y, z) such that
L(Rk, z) = {x, z}}, respectively. Since their lower contour set at z coincide, for any j, l ∈
Sz(RN ;y, z), j ∼ (RN ;y, z)l. Similarly, for any k,h ∈ S{x,z}(RN ;y, z), k ∼ (RN ;y, z)h. More-
over, for any j ∈ Sz(RN ;y, z), {z} = L(Rj , z) ⊂ L(Rk, y) for any k ∈ S{x,z}(RN ;y, z), thus
j � (RN ;y, z)k. Thus, � (RN ;y, z) is complete and acyclic showing that sequential inclusion
holds. �

We now prove Theorem 1.

Proof of Theorem 1. We will use the following fact several times: for any reflexive, complete
and acyclic binary relation T on a finite set B , the set C(B,T ) = {x ∈ B: xTy for any y ∈ B} of
best elements of T on B is non-empty.
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Let f be a strategy-proof social choice function on ×i∈N Ri satisfying sequential inclu-
sion. By contradiction, suppose that f is manipulable by some coalition C ⊂ N . That is,
there exists a coalition C, RN ∈ ×i∈N Ri , and R̃C ∈ ×i∈C Ri , such that for any agent i ∈ C,
f (R̃C,R−C)Pif (RN). Let y = f (R̃C,R−C) and z = f (RN). Note that C ⊂ S(RN ;y, z). Now
we will go from RN to (R̃C,R−C) by steps, replacing each time the preference of one agent in C.
The order in C will be determined by sequential inclusion.

By sequential inclusion, � (RN ;y, z) is complete and acyclic on S(RN ;y, z), thus, complete
and acyclic on C. Choose an agent in C(C;� (RN ;y, z)), without loss of generality, say it is
agent 1. Thus, L(R1, z) ⊂ L(Rh,y) for h ∈ C\{1}. Change preferences of agent 1 and let z1 =
f (R̃1,R−{1}). By strategy-proofness, z1 ∈ L(R1, z) and thus z1 ∈ L(Rh,y) for any h ∈ C\{1}.
Observe that S((R̃1,R−{1});y, z1) ⊃ C\{1}.

By sequential inclusion, � (RN ;y, z1) is complete and acyclic on S(RN ;y, z1), thus, com-
plete and acyclic on C\{1}. Choose an agent in C(C\{1};� (RN ;y, z1)), without loss of general-
ity, say it is agent 2. Thus, L(R2, z1) ⊂ L(Rh,y) for h ∈ C\{1,2}. Change preferences of agent 2
and let z2 = f (R̃{1,2},R−{1,2}). By strategy-proofness, z2 ∈ L(R2, z1) and thus z2 ∈ L(Rh,y) for
any h ∈ C\{1,2}. Observe that S((R̃{1,2},R−{1,2});y, z2) ⊃ C\{1,2}.

Repeat the same argument changing from Ri to R̃i the preferences of all agents in C. Suppose
that we have repeated this process c−2 times, that is, without loss of generality, we have changed
preferences of agent c − 2.

By sequential inclusion, � (RN ;y, zc−2) is complete and acyclic on S(RN ;y, zc−2),
thus, complete and acyclic on C\{1, . . . , c − 2}. Choose an agent in C(C\{1, . . . , c − 2};�
(RN ;y, zc−2)), without loss of generality, say it is agent c − 1. Thus, L(Rc−1, zc−2) ⊂
L(Rh,y) for h ∈ C\{1, . . . , c − 1} ≡ c. Change preferences of agent c − 1 and let zc−1 =
f (R̃{1,...,c−1},R−{1,...,c−1}). By strategy-proofness, zc−1 ∈ L(Rc−1, zc−2) and thus zc−1 ∈
L(Rc, y). �

We now prove our more general sufficiency result.

Proof of Theorem 2. We begin the proof by stating and proving an auxiliary lemma and a re-
mark.

Lemma. Let f be a strategy-proof social choice function. For any RN ∈ ×i∈N Ri , any i ∈ N , if
R′

i ∈ Ri is a strict monotonic transformation of Ri at f (RN) we have that f (RN) = f (R′
i ,R−i ).

Proof. Let f be any strategy-proof social choice function. Let RN ∈ ×i∈N Ri and let R′
i ∈ Ri

be a strict monotonic transformation of Ri at f (RN). Suppose that f (RN) �= f (R′
i ,R−i ). By

strategy-proofness, f (RN)Rif (R′
i ,R−i ) and f (R′

i ,R−i )R
′
if (RN) for all R−i ∈ R−i . Since R′

i

is a strict monotonic transformation of Ri at f (RN), we have that f (RN)P ′
i f (R′

i ,R−i ), a con-
tradiction. This ends the proof of the Lemma. �
Remark. Notice that condition (b) in Definition 8 can be restated as follows: (b′) for each pair
y, z ∈ A and for each subset T in S(RN ;y, z), there exists R′

N ∈ ×i∈N Ri where R′
N\T = RN\T ,

such that

(1′) R′
N is a strict monotonic transformation of RN at z,

(2′) for any i ∈ T , yP ′
i z and

(3′) � (R′
N ;y, z) is complete and acyclic on T .
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Proof. Clearly condition (b′) implies condition (b). Now, consider RN ∈ ×i∈N Ri and let y, z,
and R′

N such that (b) holds. Let T ⊂ S(RN ;y, z) and define R′
N such that R′

N\T = RN\T and

R′
T = R′

T . Note that (1′), (2′), and (3′) hold for R′
N on T since (1), (2), and (3) hold for R′

N on
the larger set S(RN ;y, z). This ends the proof of the Remark. �

We now complete the proof of Theorem 2.
Let f be a strategy-proof social choice function on ×i∈N Ri and by contradiction suppose that

f is manipulable by some coalition C ⊂ N , that is, there exists R̃C ∈ ×i∈C Ri , such that for any
agent i ∈ C, f (R̃C,R−C)Pif (RN). Let us denote y = f (R̃C,R−C) and z = f (RN). Note that
C ⊂ S(RN ;y, z). The proof consists of c steps. Mainly, in each one, we change the preference
of a single agent i ∈ C to be R̃i .

Step 1:

Case 1.1. If RN satisfies sequential inclusion. We get a contradiction using the same argument
as in the proof of Theorem 1.

Case 1.2. If RN does not satisfy sequential inclusion, since the domain satisfies indirect sequen-
tial inclusion, by the above Remark applied to y, z and T = C, there exists R′

N such that R′
N\C =

RN\C and conditions (1′), (2′), and (3′) in the above Remark hold. By the above Lemma and (1′),
we obtain that f (R′

C,R−C) = z. By condition (2′), y = f (R̃C,R−C)P ′
i f (R′

C,R−C) = z. Thus,
coalition C manipulates f at (R′

C,R−C) via R̃C . By (3′), � (R′
N ;y, z) is complete and acyclic

on C. Note that S((R′
C,R−C);y, z) = S(RN ;y, z). Choose an agent in C(C,� (R′

N ;y, z)), with-
out loss of generality, say agent 1. Then, L(R′

1, z) ⊂ L(R′
h, y) for any h ∈ C\{1}. Change prefer-

ences of agent 1 and let z2 = f (R̃1,R
′
C\{1},R−C). By strategy-proofness, z2 ∈ L(R′

1, z) and thus

z2 ∈ L(R′
h, y) for any h ∈ C\{1}. Moreover, observe that S((R̃1,R

′
C\{1},R−C);y, z2) ⊃ C\{1}.

Go to Step 2.

Step 2: Redefine RN ≡ (R̃1,R
′
C\{1},R−C).

Case 2.1. If RN satisfies sequential inclusion we get a contradiction using the same argu-
ment as in the proof of Theorem 1 changing preferences of all agents except 1 going from
RN ≡ (R̃1,R

′
C\{1},R−C) to (R̃C,R−C) and obtaining a contradiction that C manipulates f at

(R′
C,R−C) via R̃C .

Case 2.2. If RN does not satisfy sequential inclusion, since the domain satisfies indirect se-
quential inclusion, by the above Remark applied to y, z2 and T = C\{1} ⊂ S(RN ;y, z2) =
S((R̃1,R

′
C\{1},R−C);y, z2), there exists R′

N such that R′
N\[C\{1}] = RN\[C\{1}] (that is,

R′{1}∪N\C = (R̃1,RN\C)) such that conditions (1′), (2′), and (3′) in the above Remark hold.
By the above Lemma and (1′), we obtain that f (R′

C\{1},R{1}∪N\C) = z2. By condition (2′),
y = f (R̃C,R−C)P ′

i f (R′
C\{1},R{1}∪N\C) = z2. Thus, coalition C\{1} manipulates f at (R′

C\{1},
R{1}∪N\C) = (R̃1,R

′
C\{1},R−C) via R̃C\{1}. By (3′), � (R′

N ;y, z2) is complete and acyclic on
C\{1}. Choose an agent in C(C\{1},� (R′

N ;y, z2)), without loss of generality, say agent 2.
Then, L(R′

2, z2) ⊂ L(R′
h, y) for any h ∈ C\{1,2}. Change preferences of agent 2 and let

z3 = f (R̃{1,2},R′
C\{1,2},R−C). By strategy-proofness, z3 ∈ L(R′

2, z2). Thus z3 ∈ L(R′
h, y) for

any h ∈ C\{1,2}. Also note that S((R̃{1,2},R′
C\{1,2},R−C);y, z3) ⊃ C\{1,2}. Go to Step 3.

Step 3: Redefine RN ≡ (R̃{1,2},R′
C\{1,2},R−C).
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Case 3.1. If RN satisfies sequential inclusion we get a contradiction using the same argument as
in the proof of Theorem 1 applied to C\{1} changing preferences of all agents except 2 going
from RN ≡ (R̃{1,2},R′

C\{1,2},R−C) to (R̃C,R−C) and obtaining a contradiction that coalition

C\{1} manipulates f at (R̃1,R
′
C\{1},R−C) via R̃C\{1}.

Case 3.2. If RN does not satisfy sequential inclusion, since the domain satisfies indirect se-
quential inclusion, by the above Remark applied to y, z3 and T = C\{1,2} ⊂ S(RN ;y, z3) =
S((R̃{1,2},R′

C\{1,2},R−C);y, z3), there exists R′
N such that R′

N\[C\{1,2}] = RN\[C\{1,2}] (that is,

R′{1,2}∪N\C = (R̃{1,2},RN\C)) such that conditions (1′), (2′), and (3′) in the above Remark hold.
By the above Lemma and (1′), we obtain that f (R′

C\{1,2},R{1,2}∪N\C) = z3. By condition (2′), for

i ∈ C\{1,2}, y = f (R̃C,R−C)P ′
i f (R′

C\{1,2},R{1,2}∪N\C) = z3. Thus, coalition C\{1,2} manip-

ulates f at (R′
C\{1,2},R{1,2}∪N\C) = (R̃{1,2},R′

C\{1,2},R−C) via R̃C\{1,2}. By (3′), � (R′
N ;y, z3)

is complete and acyclic on C\{1,2}. Choose an agent in C(C\{1,2},� (R′
N ;y, z3)), without loss

of generality, say agent 3. Then, L(R′
3, z3) ⊂ L(R′

h, y) for any h ∈ C\{1,2,3}. Change prefer-
ences of agent 3 and let z4 = f (R̃{1,2,3},R′

C\{1,2,3},R−C). By strategy-proofness, z4 ∈ L(R′
3, z3).

Thus z4 ∈ L(R′
h, y) for any h ∈ C\{1,2,3}. Also note that S((R̃{1,2,3},R′

C\{1,2,3},R−C);y, z4) ⊃
C\{1,2,3}. Go to Step 4.

We repeat a similar argument till Step (c − 1). Note that by the recursive argument when ana-
lyzing Step (c − 1), from Step (c − 2) we know that coalition C\{1, . . . , c − 3} manipulates f at
(R̃{1,...,c−3},R′

C\{1,...,c−3},R−C) via R̃C\{1,...,c−3}. Let zc−1 = f (R̃{1,...,c−2},R′
C\{1,...,c−2},R−C).

By strategy-proofness, zc−1 ∈ L(R′
c−2, zc−2). Thus zc−1 ∈ L(R′

h, y) for any agent in {c − 1, c}.
Moreover, S((R̃{1,...,c−2},R′

C\{1,...,c−2},R−C);y, zc−1) ⊃ {c − 1,−c}.
Step (c-1): Redefine RN ≡ (R̃{1,...,c−2},R′

C\{1,...,c−2},R−C).

Case (c-1).1. If RN satisfies sequential inclusion we get a contradiction using the same argument
as in the proof of Theorem 1 applied to C\{1, . . . , c − 3} changing only preferences of agents
c − 1 and c going from RN ≡ (R̃{1,...,c−2},R′{c−1,c},R−C) to (R̃C,R−C) and obtaining a con-

tradiction that coalition C\{1, . . . , c − 3} manipulates f at (R̃{1,...,c−3},R′
C\{1,...,c−3},R−C) via

R̃C\{1,...,c−3}.
Case (c-1).2. If RN does not satisfy sequential inclusion, since the domain satisfies indirect
sequential inclusion, by the above Remark applied to y, zc−1 and T = {c − 1, c} ⊂ S(RN ;
y, zc−1) = S((R̃{1,...,c−2},R′

C\{1,...,c−2},R−C);y, zc−1), there exists R′
N such that R′

N\{c−1,c} =
RN\{c−1,c} such that conditions (1′), (2′), and (3′) in the above Remark hold. By the above
Lemma and (1′), we obtain that f (R′{c−1,c},RN\{c−1,c}) = zc−1. By condition (2′), for c − 1

and c, y = f (R̃C,R−C)P ′
i f (R′{c−1,c},RN\{c−1,c}) = zc−1. Thus, coalition {c − 1, c} manipu-

lates f at (R′{c−1,c},RN\{c−1,c}) = (R̃{1,...,c−2},R′{c−1,c},R−C) via R̃{c−1,c}. By (3′), � (R′
N ;

y, zc−1) is complete and acyclic on {c−1, c}. Choose an agent in C({c−1, c},� (R′
N ;y, zc−1)),

without loss of generality, say agent c − 1. Then, L(R′
c−1, zc−1) ⊂ L(R′

h, y) for h = c. Change
preferences of agent c − 1 and let zc = f (R̃{1,...,c−1},R′

c,R−C). By strategy-proofness, zc ∈
L(R′

c−1, zc−1). Thus zc ∈ L(R′
c, y), which implies that L(R′

c, zc) ⊂ L(R′
c, y). Go to Step c.

Step c: Let zc+1 = f (R̃C,R−C) (that is, zc+1 = y). By strategy-proofness and definition of zc ,
zc+1 ∈ L(R′

c, zc). Thus zc+1 = y ∈ L(R′
c, y) which is the desired contradiction. This ends the

proof of Theorem 2. �
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Next, we state the relationship between our Theorem 2 and Theorem 1 in Le Breton and
Zaporozhets [12] for onto social choice functions.

Proof of Proposition 2. If for any RN ∈ Rn, RN satisfies sequential inclusion, the proof ends.
Otherwise, let RN ∈ Rn be a preference profile violating sequential inclusion. We will now check
that RN satisfies condition (b) in Definition 8. Let y, z ∈ A and define R′

N as follows: For any
i ∈ N\S(RN ;y, z), let R′

i = Ri . Consider an agent i ∈ S(RN ;y, z). By regularity of f , there
exists Ri ∈ R such that the best alternative of Ri is y, since by ontoness, y ∈ Af . Additionally,
since yPiz, by richness of the domain there exists R̂i ∈ R such that y is the best alternative
according to P̂i , and for all x �= z such that zRix, we have zP̂ix. Thus, for any i ∈ S(RN ;y, z), let
us define R′

i = R̂i . Clearly, by definition of R′
N , conditions (1) and (2) in part (b) of Definition 8

are satisfied. Concerning condition (3), observe that for any i, j ∈ S(RN ;y, z), i ∼ j . Thus,
� S(RN ;y, z) is complete and acyclic which ends the proof. �

Finally, we prove our necessity result.

Proof of Theorem 4. Our strategy of proof is as follows. Let ×i∈N Ri be a domain where se-
quential inclusion is violated. We shall construct a subdomain and exhibit a rule on it which is
strategy-proof but not group strategy-proof.

We will structure our argument as follows. We first present three lemmas, and then provide
our construction as a final step.

We begin by Lemma 1. Remember that sequential inclusion requires our binary relation � to
be complete and acyclic for all pairs of alternatives y, z. Therefore, its violation can come from
two sources. If � is incomplete on a pair y, z, then it is easy to show that there are four distinct
alternatives and two preference relations in the domain satisfying enough properties to allow for
our construction. The starting point for this reasoning is the following lemma.

Lemma 1. Let RN ∈ ×i∈N Ri and y, z ∈ A. If � (RN ;y, z) on S(RN ;y, z) is not complete then
there exist at least four alternatives in A, say y, z, a1, and a2. Moreover, there exist 2 individual
preference relations in RN , say R1, R2 such that a1R

1y, yP 1z, zR1a2, and a2R
2y, yP 2z, zR2a1.

Proof. For completeness to fail, there must exist two alternatives y and z and two individuals
i and j such that ¬[L(Ri, z) ⊂ L(Rj , y)] and ¬[L(Rj , z) ⊂ L(Ri, y)] hold. There will also be
a1, a2 ∈ A\{y, z} such that a2 ∈ L(Ri, z) but a2 /∈ L(Rj , y) and a1 ∈ L(Rj , z) but a1 /∈ L(Ri, y)

(note that a1 �= z since z ∈ L(Ri, y) but a1 /∈ L(Ri, y). Similarly, a1 �= y since a1 ∈ L(Rj , z) but
y /∈ L(Rj , z)). Finally, observe that a1 �= a2: since a1 ∈ L(Rj , z) and yPjz then a1 ∈ L(Rj , y).
But, a2 /∈ L(Rj , y). We have then shown that the violation of completeness requires at least four
distinct alternatives. Furthermore, observe that the preferences of the two agents i and j satisfy
the conditions predicated by the lemma. Then, define R1 = Ri and R2 = Rj . This ends the proof
of Lemma 1. �

Lemma 1 identifies the alternatives and the preferences on them that will help us determine
a subdomain where equivalence will not hold, given that � is not acyclic. This construction of
such a subdomain and of a function that is strategy-proof on it, but group manipulable (in fact,
by only two-agent coalitions) is the essence of the proof of Lemma 3.

We now turn to the case where � is complete for all pairs and all profiles, and the violation
of sequential inclusion arises because it is cyclical for some profile and some pair. We concen-
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Table VI
The four preferences over six alternatives in Example 5 (see proof of Theorem 4).

R1 R2 R3 R4

a1 a2 a3 a4
y y y y

a2 a3 a4 a1
a3 a4 a1 a2
z z z z

a4 a1 a2 a3

trate on one cycle of minimal length k, and prove that its existence requires that a number of
distinct preferences on at least k + 2 distinct alternatives exist in the initial domain. We shall use
these preferences to construct a subdomain and to define a social choice function on it that is
strategy-proof but not group strategy-proof. The starting point for the construction is provided
by Lemma 2.

Lemma 2. Let RN ∈ ×i∈N Ri and y, z ∈ A such that � (RN ;y, z) on S(RN ;y, z) has a cycle of
size k, 3 � k � s but � (RN ;y, z) does not have any cycle of lower size. Then, there exist at least
k + 2 alternatives in A, say y, z, a1, a2, . . . , ak ∈ A. There also exist k individual preference
relations in RN , say R1, R2, . . . ,Rk , such that for any l = 1, . . . , k ∈ N , the following holds:
[(1) alR

ly, (2) zRlal−1, for any j = 1, . . . , k − 2, (3) yP lal+j , and (4) al+jP
lz]. Moreover, if

for any alternative w ∈ A, the binary relation � (RN ;y,w) on S(RN ;y,w) is complete, then
(5) for any l = 1, . . . , k, [al+jP

lal+1+j , for j = 1, . . . , k − 3].8

Again, Lemma 2 allows us to identify alternatives and specific preferences that will be used
to construct a subdomain where to define a function that proves the lack of equivalence.

Before turning to the proof we introduce a piece of notation and we present an example of the
type of reasoning that we shall be using.

Concerning notation, we define the following equivalence relation on the set of integers. Let
k ∈ Z (Z is the set of integers), k � n, and i, j ∈ Z we say that j and i are equivalent modulo k,
say j ≡ i (mod k), if either j = i or else j = i + vk, for some v ∈ Z.

In what follows, whenever we have j ≡ i (mod k), then we will write Rj = Ri . We will do
the same and Rj = Ri , when we refer to a list of specific preference relations labelled by their
superindex, or aj = ai , where these are the subindices in a list of alternatives.

Now, Example 3 shows how, given a profile that generates a cycle in our binary relation �,
this allows us to single out some set of preferences that will later be used to construct the domain
we are looking for. The argument in the proof of Lemma 2 extends the intuition in this example.

Example 3. Take N = {1,2,3,4,5} and A = {a1, a2, a3, a4, a5, y, z}. Let RN ∈ ×i∈N Ri such
that � (RN ;y, z) on S(RN ;y, z) has a cycle of size four, but none of lower size. Note that this
means that #S(RN ;y, z) � 4. We single out four preference relations in RN and six alterna-
tives in A in such a way that those preferences, when restricted to the six alternatives, are as in
Table VI.

Note that we do not say anything about the relative position of a5 with respect to any other
alternative: it could be any. Observe that the relation � (RN ;y, z) over agents having the prefer-

8 The latter condition has some bite only for k � 4.
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ences in the table has a cycle of size four, is complete and has no cycle of size 3. In particular,
observe that the following binary relations hold: 1 
 2, 2 
 3, 3 
 4 and 4 
 1. Moreover, 1 ∼ 3,
2 ∼ 4.

Proof of Lemma 2. We first prove that there must exist alternatives and individuals whose pref-
erences satisfy (1) and (2). Without loss of generality, let the cycle of k agents be 1 
 2 
 3 

· · · 
 k and k 
 1. Thus, their individual preferences in RN , say R1, R2, . . . , Rk , are such that
L(Rl, z) ⊂ L(Rl+1, y) and ¬[L(Rl+1, z) ⊂ L(Rl, y)] for l = 1, . . . , k. From the latter expres-
sion, for any l = 1, . . . , k, there exists al ∈ A\{z, y} such that zRl+1al and alRly. Note that for
any l = 1, . . . , k, al �= z and al �= y since yPlz and yPl+1z, respectively. Thus, there exist k indi-
vidual preference relations in RN , in particular: R1,R2, . . . ,Rk , such that expressions (1) and (2)
in the lemma hold. We now show that the alternatives al so defined are all distinct.

For any i, 1 � i � k − 1, [ai �= aj , for any j , k � j > i].
Let i, j such that j − i = 1. Given the above cycle of k agents, j 
 j + 1, thus aj−1 ∈

L(Rj , z) ⊂ L(Rjy). But we also proved that aj /∈ L(Rj , y). Thus, aj �= aj−1.
Let i, j such that j − i = 2. Given the above cycle of k agents, j − 1 
 j , thus aj−2 ∈

L(Rj−1, z) ⊂ L(Rj , y). But since j 
 j + 1, by aj /∈ L(Rj , y). Thus, aj �= aj−1.
Let i, j such that j − i = t , for 3 � t � k − 1. By assumption, there is no cycle of agents in

S(RN ;y, z) of size t . Thus, given the above cycle of k agents, i+1 
 i+2 
 · · · 
 i+(t −1) 
 j

and i + 1 � j . Thus, ai ∈ L(Ri+1, z) ⊂ L(Rj , y). But we also proved that aj /∈ L(Rj , y). Thus,
ai �= aj .

We now prove that the preferences in question satisfy expression (3).
For any l = 1, . . . , k, [al+jPlz for any j = 1, . . . , k − 2].
Take any j . By assumption, there is no cycle of agents in S(RN ;y, z) of size j + 1 (since

2 � j + 1 � k − 1). Thus, given the above defined cycle of k agents, l 
 l + 1 
 · · · 
 l + j 
 j

and l � l +j . Thus, L(Rl, z) ⊂ L(Rl+j , y). If zRlal+j then al+j ∈ L(Rl+j , y) which contradicts
expression (1) above proved.

We now show that the preferences also satisfy expression (4).
For any l = 1, . . . , k, [yPlal+j for any j = 1, . . . , k − 2].
Take any j . By assumption, there is no cycle of agents in S(RN ;y, z) of size k − j (since

2 � k−j � k−1). Thus, given the above defined cycle of k agents l−(k−j −1) 
 l−(k−j) 

l − (k − j + 1) 
 · · · 
 l − 3 
 l − 2 
 l − 1 
 l and l − (k − j − 1) � l. Using our equivalence,
l + j + 1 ≡ l + j + 1 − k (mod k) and thus Rl+j+1 = Rl+j+1−k . Thus, L(Rl+j+1, z) ⊂ L(Rl, y).
By the previous lemma, we know that al+j ∈ L(Rl+j+1, z), and thus al+j ∈ L(Rl, y).

For k = 3 the lemma is proved.
For k � 4, we finally prove that the preferences also satisfy expression (5).
For any l = 1, . . . , k, [al+jPlal+1+j , for j = 1, . . . , k − 3].
We first show that for any l = 1, . . . , k, al+1Plal+1+j for j = 1, . . . , k − 3. (∗)
Fix l and j . By contradiction, suppose that al+1+jRlal+1. Consider the pair of alternatives

(y, al+1+j ). By hypothesis, the binary relation � (RN ;y, al+1+j ) on S(RN ;y, al+1+j ) is com-
plete. Since l, l + 1 ∈ S(RN ;y, al+1+j ), either l � l + 1 or l + 1 � l should hold. By hypothesis,
al+1 ∈ L(Rl, al+1+j ) and, by conditions (1) to (4) already proved, al+1 /∈ L(Rl+1, y). Then,
¬[L(Rl, al+1+j ) ⊂ L(Rl+1, y)], or equivalently, ¬[l � l + 1]. On the other hand, by condi-
tions (1) to (4), al /∈ L(Rl, y), but also al ∈ L(Rl+1, z) and al+1+jPl+1z holds. The latter two
expressions imply that al ∈ L(Rl+1, al+1+j ). Then, ¬[L(Rl+1, al+1+j ) ⊂ L(Rl, y)], or equiva-
lently, ¬[l + 1 � l] which is the desired contradiction.
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For k = 4 the lemma is proved.
Now, for k > 4, we show that for any l = 1, . . . , k, al+tPlal+t+1 for any t , t = 2, . . . , k − 3.
Fix l and t . By contradiction, suppose that al+t+1Rlal+t . Consider the pair of alterna-

tives (y, al+t+1). By hypothesis, the binary relation � (RN ;y, al+t+1) on S(RN ;y, al+t+1)

is complete. Since l, l + t ∈ S(RN ;y, al+t+1), either l � l + t or l + t � l should hold.
By hypothesis, al+t ∈ L(Rl, al+t+1) and, by conditions (1) to (4), al+t /∈ L(Rl+t , y). Then,
¬[L(Rl, al+t+1) ⊂ L(Rl+t , y)], or equivalently, ¬[l � l+ t]. On the other hand, by conditions (1)
to (4), al /∈ L(Rl, y). Using the modulo k equivalence, and by the previous statement (∗) ap-
plied for j = k − 1 − t and for l ≡ l + t , al+t+1Pl+t al (that is, al ∈ L(Rl+t , al+t+1)). Then,
¬[L(Rl+t , al+t+1) ⊂ L(Rl, y)], or equivalently, ¬[l + t � l] which is the desired contradiction.

Observe that the preferences of the k agents, 1, . . . , k, satisfy the conditions predicated by the
lemma. Again define Ri = Ri for all i = 1, . . . , k. This ends the proof of Lemma 2. �

Next we prove a lemma that already establishes our result for the case where sequential in-
clusion is violated by the lack of completeness of our binary relation.9 Let first define pairwise
strategy-proofness, mainly no coalition of 1 or 2 agents can manipulate the rule at any profile.

Definition. A social choice function f is pairwise strategy-proof on ×i∈N Ri if f is not group
manipulable on ×i∈N Ri for any RN ∈ ×i∈N Ri by any coalition C ⊂ N with #C � 2.

Lemma 3. Let ×i∈N Ri be a domain on which any strategy-proof social choice function on
×i∈N Di ⊂ ×i∈N Ri is also pairwise strategy-proof on ×i∈N Di . Then, for any profile RN ∈
×i∈N Ri and for any pair y, z ∈ A, � (RN ;y, z) on S(RN ;y, z) is complete.

Proof. Suppose that there exists RN ∈ ×i∈N Ri and a pair of alternatives y, z ∈ A, such that the
binary relation � (RN ;y, z) defined on S(RN ;y, z) is not complete.

Therefore there exists a pair of agents i, j ∈ S(RN ;y, z) such that neither i � j nor j �
i. By Lemma 1 we know that there exist a1, a2 ∈ A\{y, z} and a1 �= a2, and there exist two
individual preference relations in RN , say R1, R2 such that a1R

1y, yP 1z, zR1a2, and a2R
2y,

yP 2z, zR2a1. Define Di = {R1,R1}, Dj = {R2,R2} for i, j , Dl = Rl for any l ∈ N\{i, j}.
Note that R1 and R2 are the opposite preferences of R1 and R2, respectively. Now construct f

as follows: for any R̂−{i,j} ∈ ×l∈N\{i,j}Rl , f (R1
i ,R

2
j ; R̂−{i,j}) = a1, f (R1

i ,R
2
j ; R̂−{i,j}) = a2,

f (R1
i ,R

2
j ; R̂−{i,j}) = z, f (R1

i ,R
2
j ; R̂−{i,j}) = y. Note that f is strategy-proof but not pairwise

strategy-proof. This ends the proof of Lemma 3. �
A final step: identifying a domain and defining a rule.
Suppose, without loss of generality, that ×i∈N Ri is a domain such that for any RN ∈ ×i∈N Ri

and any pair of alternatives y, z ∈ A, � (RN ;y, z) on S(RN ;y, z) is complete but sequential
inclusion does not hold. Then, there exists R̃N ∈ ×i∈N Ri , a pair of alternatives y, z ∈ A, such
that � (R̃N ;y, z) defined on S(R̃N ;y, z) = {i ∈ N : yP̃iz} has cycles. Let k � 3 be the minimal
size of these cycles. Therefore there exists a set of k agents, say Sk = {1,2, . . . , k} included in
S(R̃N ;y, z) such that 1 
 2 
 · · · 
 k and k 
 1. Thus, there exist at least k + 2 alternatives, say

9 This is the first instance where we use the assumption that the domain admits opposite preferences. Lemmas 1 and 2
do not require it and could therefore be used to explore similar partial necessity results on domains satisfying alternative
requirements.
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Table VII
Bordaε scores in the definition of the rule in the proof of Theorem 4.

ai\Rj R1 R2 R3 . . . Rk−2 Rk−1 Rk

Bordaε(Rj ;a1) k − 1 + ε 0 1 k − 4 k − 3 k − 2 + ε

Bordaε(Rj ;a2) k − 2 + ε k − 1 + ε 0 k − 5 k − 4 k − 3 + ε

Bordaε(Rj ;a3) k − 3 + ε k − 2 + ε k − 1 + ε k − 6 k − 5 k − 4 + ε

. . .

Bordaε(Rj ;ak−2) 2 + ε 3 + ε 4 + ε k − 1 + ε 0 1 + ε

Bordaε(Rj ;ak−1) 1 + ε 2 + ε 3 + ε k − 2 + ε k − 1 + ε 0
Bordaε(Rj ;ak) 0 1 2 k − 3 k − 2 k − 1 + ε

y, z, a1, a2, . . . , ak ∈ A, and k individual preference relations in R̃N , say R1, . . . ,Rk , satisfying
conditions (1) to (5) in Lemma 2.

We now identify a subdomain and a rule on it that is strategy-proof but not group strategy-
proof.

Each individual will have two possible preferences. Then, out of all possible profiles we will
single out two of them: the one where each agent i has preferences Ri , and the one where each
agent i has opposite preferences Ri . All other profiles will be classified in a way that depends
on the sets of agents that have preferences of one type and of the other. Formally, consider
the following subdomain of ×i∈N Ri . For any l ∈ N\{1, . . . , k}, define Dl = Rl . For any i =
1, . . . , k, define Di = {Ri,Ri} where Ri is the opposite preference of Ri . Clearly, ×i∈N Di ⊂
×i∈N Ri . Let R̃Sk

= (R1, . . . ,Rk) and call RSk
= (R1, . . . ,Rk).

Let RSk
∈ ×i∈Sk

Di . We define a partition of Sk that depends on RSk
: Let Sk,z(RSk

) = {i ∈ Sk:
Ri �= Ri} and Sk,y(RSk

) = {j ∈ Sk: Rj = Rj }.
Now construct f as follows: for any R̂−Sk

∈ ×l∈N\Sk
Dl ,

f
(
R1

1, . . . ,Rk
k , R̂−Sk

) = f (R̃Sk
, R̂−Sk

) = z,

f
(
R1+t

1 , . . . ,Rk+t
k , R̂−Sk

) = f (RSk
, R̂−Sk

) = y, and

f (RSk
, R̂−Sk

) = arg max
al∈{a1,...,ak}

Bordaε
(
(RSk

; R̂−Sk
);al

)
, for any other RSk

∈ ×i∈Sk
Di ,

where Bordaε((RSk
; R̂−Sk

);al) ≡ ∑
j∈Sk,y (RSk

) Bordaε(Rj ;al), with Bordaε(Rj ;al) the score
that alternative al receives under individual preference Rj for j ∈ Sk,y(RSk

) as given in Table VII
and with ε > 0 and ε < 1

k−2 .
Notice first that only agents in Sk,y play an effective role in the social choice function. The

rest are dummies. Next, we should explain what we mean by the expression above: Bordaε(·).
What we do is to compute a variant of the Borda count for all those profiles that are different
from the two we singled out to produce z and y, respectively. In this version of the Borda count,
each alternative receives the points that correspond to it because of its position, plus eventually
some value ε. The alternatives and positions that get this extra epsilon are chosen in such a way
that no ties arise among winners within the domain. Therefore, we are defining a function, not
a correspondence. The specific values that apply under this rule for our profiles are given in
Table VII.

Note that for any R̂−Sk
∈ ×l∈N\Sk

Rl and any i ∈ {1, . . . , k}, f (R̂Sk
, R̂−Sk

) = ai , where R̂Sk
∈

×l∈Sk
Dl\{R̃Sk

,RSk
} is such that Sk,y(R̂Sk

) = {i}. Thus, the range of the social choice function is
Af = {a1, . . . , ak, y, z}.
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We now show the following two claims for any RSk
∈ ×l∈Sk

Dl\{R̃Sk
,RSk

}, and R̂−Sk
∈

×l∈N\Sk
Rl . Note that Sk,z(RSk

) and Sk,y(RSk
) are non-empty sets. In words, Claim 1 requires

that at least one agent belonging to the set Sk,y , of agents i with preference Ri , has no incentive
to deviate to alternative y. Claim 2 requires that at least one agent belonging to the set Sk,z, of
agents i with preference Ri′, has no incentive to deviate from alternative z.

Claim 1. Let RSk
∈ ×l∈Sk

Dl\{R̃Sk
,RSk

} and R̂−Sk
∈ ×l∈N\Sk

Rl . Then,

f (RSk
, R̂−Sk

) ∈
⋃

j∈Sk,y (RSk
)

U(Rj , y),

where U(Rj , y) = {x ∈ A: xRjy}.

Proof. By contradiction, suppose that, without loss of generality, f (RSk
, R̂−Sk

) = ai such that
yPjai for all j ∈ Sk,y(RSk

). Thus, i /∈ Sk,y(RSk
). Therefore,

∑
j∈Sk,y (RSk

)

Bordaε(Rj ;a(i−1) mod k) >
∑

j∈Sk,y (RSk
)

Bordaε(Rj ;ai),

and thus f (RSk
, R̂−Sk

) �= ai which is the desired contradiction. This ends the proof of
Claim 1. �
Claim 2. Let RSk

∈ ×l∈Sk
Dl\{R̃Sk

,RSk
} and R̂−Sk

∈ ×l∈N\Sk
Rl . Then,

f (RSk
, R̂−Sk

) ∈
⋃

i∈Sk,z(RSk
)

L(Ri, z).

Proof. By contradiction, suppose that, without loss of generality, f (RSk
, R̂−Sk

) = al such that
al /∈ ⋃

i∈Sk,z(RSk
) L(Ri, z). Therefore, (l + 1) mod k ∈ Sk,y(RSk

). For notational simplicity, we
will write (l + 1) instead. By Claim 1, l ∈ Sk,y(RSk

). Note that for any l = 1, . . . , k,

Bordaε(Rl+1;al+1) − Bordaε(Rl+1;al) = k − 1 + ε.

Since Sk,z(RSk
) is not empty, if l �= k − 1 we have

∑
j∈Sk,y (RSk

)\{l+1}
Bordaε(Rj ;al) −

∑
j∈Sk,y (RSk

)\{l+1}
Bordaε(Rj ;al+1) < k − 1.

Then,

Bordaε
(
(RSk

; R̂−Sk
);al+1

) − Bordaε
(
(RSk

; R̂−Sk
);al

)
> k − 1 + ε + 1 − k = ε > 0,

and thus f (RSk
, R̂−Sk

) �= al which is the desired contradiction.
If l = k − 1 and since Sk,z(RSk

) is not empty,
∑

j∈Sk,y (RSk
)\{k}

Bordaε(Rj ;ak−1) −
∑

j∈Sk,y (RSk
)\{k}

Bordaε(Rj ;ak) � (k − 2)(1 + ε).

Therefore,

Bordaε
(
(RSk

; R̂−Sk
);ak

) − Bordaε
(
(RSk

; R̂−Sk
);ak−1

)
� 1 − (k − 3)ε
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where 1 − (k − 3)ε > 0 since ε < 1
k−2 . Thus f (RSk

, R̂−Sk
) �= al = ak−1 which is the desired

contradiction. This ends the proof of Claim 2. �
We now show that f is strategy-proof but it is not group strategy-proof. Observe that by

construction of f , the only relevant deviating coalitions are those C ⊂ Sk . Since each agent in
coalition Sk strictly gains by deviating from f (R1

1,R2
2, . . . ,Rk

k , R̂−Sk
) = z to f (R1

1,R
2
2, . . . ,R

k
k,

R̂−Sk
) = y, then f is not group strategy-proof.

We now check that no single individual l ∈ Sk can manipulate f at any profile. Let
(RSk

; R̂−Sk
) ∈ ×i∈N Di be any profile. Remember that for any l ∈ Sk , Dl = {Rl,Rl}. We dis-

tinguish two cases:

Case 1. If l ∈ Sk,y(RSk
). By definition of f , f (RSk

, R̂−Sk
) �= y. Suppose that f (RSk

, R̂−Sk
) = ai

for some i ∈ Sk and thus Sk,y(RSk
) � Sk\{l}. If agent l announces Rl

l instead of Rl
l , in the

definition of f agent l deducts more score to those alternatives he likes most. Therefore either
the initial alternative ai or else a less preferred alternative for agent l is chosen and agent l does
not manipulate f at (RSk

, R̂−Sk
) via Rl . An identical argument would apply if f (RSk

, R̂−Sk
) = z

instead of ai . This shows that no agent l ∈ Sk,y(RSk
) can manipulate f at any profile (RSk

; R̂−Sk
)

via Rl
l .

Case 2. If l ∈ Sk,z(RSk
). A similar argument to Case 1 works: By definition of f , f (RSk

, R̂−Sk
) �=

z. Suppose that f (RSk
, R̂−Sk

) = ai for some i ∈ Sk and thus Sk,y(RSk
) ⊂ Sk\{l}. If agent l an-

nounces Rl
l instead of Rl

l , in the definition of f agent l adds more score to those alternatives
he likes less (when announcing Rl

l agent l ∈ Sk,y(R
l
l ,RSk\{l}; R̂−Sk

)). Therefore either the ini-
tial alternative ai or else a less preferred alternative for agent l is chosen and agent l does not
manipulate f at (RSk

, R̂−Sk
) via Rl . An identical argument would apply if f (RSk

, R̂−Sk
) = y in-

stead of ai . This shows that no agent l ∈ Sk,y(RSk
) can manipulate f at any profile (RSk

; R̂−Sk
)

via Rl
l . �
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